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Sampling is the act or process of selecting a part of something with the intent of showing the qual-
ity, style, or nature of the whole. Monitoring does not always involve sampling techniques. Some-
times, you can count or measure all individuals within a population of interest in a complete
census. Other times, you may select qualitative techniques that are not intended to show the qual-
ity, style, or nature of the whole population (e.g., subjectively positioned photographed plots).

What about those situations where you have an interest in learning something about the en-
tire population, but where counting or measuring all individuals is not practical? This situation
calls for sampling. The role of sampling is to provide information about the population in such a
way that inferences about the total population can be made. This inference is the process of gen-
eralizing to the population from the sample, usually with the inclusion of some measure of the
“goodness” of the generalization (McCall 1982).

Sampling will not only reduce the amount of work and cost associated with characterizing a
population, but sampling can also increase the accuracy of the data gathered. Some kinds of er-
rors are inherent in all data collection procedures, and, by focusing on a smaller fraction of the
population, more attention can be directed toward improving the accuracy of the data collected.

This chapter includes information on basic principles of sampling. Commonly used sam-
pling terminology is defined, and the principal concepts of sampling are described and illustrated.
Even though the examples used in this chapter are based on counts of plants in quadrats (density
measurements), most of the concepts apply to all kinds of sampling for both plants and animals.

POPULATIONS AND SAMPLES

The term “population” has both a biological definition and a statistical definition. In this chapter
and in Chapters 8 and 9, we will be using the term “population” to refer to the statistical popula-
tion or the “sampling universe” in which monitoring takes place. This sampled population will
sometimes include the entire biological population and, at other times, some portion of the biologi-
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Figure 7.1. Population of 400 plants distributed in 20 clumps of 20 plants. This figure shows a simple random sample of ten 2m X 2m
quadrats, along with sample statistics and true population parameters.
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cal population. Sometimes, the sampled population will not be comprised of individual organisms
in the way we think of biological populations, because the population consists of the complete set
of individual objects about which you want to make inferences.
These may be individual organisms, or they may be quadrats
(plots), points, or transects. We will refer to these individual ob-
jects as sampling units. A sample is simply part of the population,

a subset of the total possible number of sampling units.

These terms can be clarified in reference to an artificial pop-
ulation of plants shown in Figure 7.1. This population contains a
total of 400 plants, distributed in 20 patches of 20 plants each.
All the plants are contained within the boundaries of a 20m x
20m macroplot. The collection of plants in this macroplot population will be referred to as the
“400-plant population.” A random arrangement of ten 2m x 2m quadrats positioned within the
400-plant population is shown in Figure 7.1. We wish to estimate the total number of plants
within the 20m x 20m macroplot. Counts of plants are in the individual quadrats. The sampling

Quadrats are square or rectangular (or
rarely circular) sampling units in which
an attribute is counted or measured.

Macroplots are relatively large areas,
with sampling units such as quadrats,
lines, or points randomly located
within them.

unit in this case is the 2m X 2m quadrat.
The sample shown in Figure 7.1 is a set of
10 randomly selected quadrats. The sam-
pled population in this case is the total col-
lection of all possible 2m x 2m quadrats that
could be placed in the macroplot (N = 100).

POPULATION PARAMETERS
VERSUS SAMPLE STATISTICS

Population parameters are descriptive mea-
sures that characterize the population and
are assumed to be fixed but unknown quan-
tities that change only if the population
changes. Greek letters such as p and ¢ are
often used to denote parameters. If we
count all the plants in all the quadrats that
make up the 400-plant population shown in
Figure 7.1 (400 plants) and divide by the
total number of possible 2m x 2m quadrat
locations in the macroplot (100 quadrats),
we obtain the true average number of plants
per quadrat (4 plants/quadrat). This, assum-
ing we have made no errors, is the true pop-
ulation mean (u). If we know how much
each individual quadrat differs from the true
population mean, we can calculate another
important population parameter, the true
population standard deviation (o). The stan-
dard deviation is a measure of how similar
each individual observation is to the overall
mean and is the most common measure
of variability used in statistics. Populations
with a large amount of variation among
possible sampling units will have a larger

The population mean is the sum of all the values for
each member of the population divided by the number of
the population members. For example, if counting plants

in quadrats, the mean is the sum of all the counts in all
the quadrats divided by the number of quadrats.

Sum of Values* for Each
Population Mean (p) = Member of the Population

Number of Population Members

Mathematically, this is given by:

X, + X+ Xy
W= "N
where
X, = value of the first member of the population.
X, = value of the second member of the population.

Xn = value of the last member of the population.
or more concisely by:

N

The sample mean is the estimate of the population
mean from the sample.

~ Sum of Values, e.g., Heights, of Each
Sample Mean (X) = Observation in Sample

Number of Observations in Sample

The equivalent mathematical statement is:

%= X

n

‘These values can be heights, counts, cover values, etc.
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The population standard devigtion is the square root standard deviation than popula-
of the population variance (denoted c?). tions with sampling units that are
more similar to one another.
Sum of (Value Associated with Member of Sample statistics are de-
Population Variance (6°) = Population — Population Mean)’ scriptive measures derived from

Number of Population Members

Mathematically, this is given by:
B K1) + (X 4.+ (X -u)?

(o]

a sample (e.g., 10 of the 100
possible 2m x 2Zm quadrats).
Sample statistics provide esti-
mates of population parameters.

N Sample statistics will vary from

or more concisely by: sample to sample, in addition to
L S(X - changing whenever the underly-

¢ == ing population changes. Roman
letters such as X for the sample

mean and s for the sample stan-

dard deviation are usually used

Population Standard Deviation (6) - J Population Variance for sample statistics. Consider
the following simple example

) —— W— . - (X-u)? where a sample of three sam-
Mathematically, this is given by: o=yo = G cifinentits yiekis valdes of 010,

The sample standard deviation s is an
estimate of the population standard
deviation. It is equivalent to the
population standard deviation except
that p is replaced by its estimator X
and N in the denominator is replaced
by n— I.

Mathematically, this is given by:

Or more concisely by:

- Jﬂx_'f]:
n—1

and 14 plants/quadrat:
The sample mean (X) = (9+10+14)/3 = 11 plants/quadrat

We could also calculate from this sample a sample standard
deviation (s). The sample standard deviation describes how
similar each individual observation is to the sample mean. The
standard deviation is easily calculated with a simple hand cal-
culator using the “s” or "s, " key. The standard deviation (s)
for the simple example above is 2.65 plants/quadrat. Consider
another simple example with sampling unit values of 2, 10,
and 21 plants/quadrat.

The mean (X) = (2+10+21)/3 = 11 plants/quadrat

The standard deviation (s) for this example is 9.54 plants/
quadrat.

Thus, both examples have a sample mean of 11 plants/
quadrat, but the second one has a higher standard deviation
(9.54 plants/quadrat) than the first (2.65 plants/quadrat), be-
cause the individual quadrat values differ more from one an-
other in the second example.

In the example shown in Figure 7.1, the true population mean is 4.00 plants/quadrat,
whereas the sample mean is 5.00 plants/quadrat. The true population standard deviation is 5.005
plants/quadrat, whereas the sample standard deviation is 6.146 plants/quadrat.

ACCURACY VERSUS PRECISION

Accuracy is the closeness of a measured or computed value to its true value. Precision is the close-
ness of repeated measurements of the same quantity. A simple example will help illustrate the dif-
ference between these two terms. Two quartz-based clocks, equally capable of tracking time, are
sitting side-by-side on a table. Someone comes by and advances one of the clocks by 1 hour. Both
clocks will be equally “precise” at tracking time, but one of them will not be “accurate.”

e mw)] sl = e

Ll -'-.'I - .

B _al
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Efficient sampling designs try to achieve high precision. When we sample to estimate some
population parameter, our sample standard deviation gives us a measure of the repeatability, or
precision of our sample; it does not allow us to assess the accuracy of our sample. If counts of
plants within different quadrats of a sample are similar to one another (e.g., the example above
with a mean of 11 and a standard deviation = 2.65), then it is likely that different independent
samples from the same population will yield similar sample means and give us high precision.
When quadrat counts within a sample are highly variable (e.g., the example above with a mean
of 11 and a standard deviation of 9.54), individual sample means from separate independent
samples may be very different from one another, giving us low precision. In either case, if the
counting process is biased (perhaps certain color morphs or growth forms of individuals are over-
looked), results may be inaccurate.

SAMPLING VERSUS NONSAMPLING ERRORS

Sampling errors result from chance; they occur when sample information does not reflect the
true population information. These errors are introduced by measuring only a subset of all the
sampling units in a population.

Sampling errors are illustrated in Figure 7.2, in which two separate, completely random
samples (A and B) are taken from the 400-plant population shown in Figure 7.1. In each case,
ten 2m x 2m quadrats are sampled, and an estimate is made of the total number of plants within
the population. The sample shown in Figure 7.2A produces a population estimate of only 80
plants, whereas the sample shown in Figure 7.2B yields an estimate of 960 plants. Both estimates
are poor because of sampling error (chance placement of the quadrats resulted in severe underes-
timates or overestimates of the true population total).

You can imagine the problems that can arise if you monitor the same population 2 years in
a row and get sample information that indicates that the population shifted from 960 plants to
80 plants when it really did not change at all. Sampling errors can lead to two kinds of mistakes:
1) missing real changes (missed-change errors) and 2) detecting apparent changes that do not
really exist (false-change errors).

The risk of committing sampling errors can be estimated from the sampling data. Some of
the basic sampling design tools covered in Chapter 8 enable you to evaluate the effectiveness of
your monitoring study by taking a closer look at the sampling data. This can be especially helpful
when setting up new projects; an evaluation of pilot sampling data can point out potential sam-
pling error problems, enabling an investigator to fix them at an early stage of the project. Good
sampling designs can reduce sampling errors without increasing the cost of sampling.

Nonsampling errors are errors associated with human, rather than chance, mistakes. Exam-
ples of nonsampling errors include the following:

* Using biased selection rules such as selecting “representative samples” by subjectively
locating sampling units or by substituting sampling units that are “easier” to measure.

» Using sampling units in which attributes cannot be accurately counted or measured.
For example, counts of grass stems within a quadrat with counts in the hundreds
may lead to numerous counting errors.

* Inconsistent field sampling effort. Nonsampling errors can be introduced if different
investigators use different levels of effort (e.g., one investigator makes counts from
“eye-level,” whereas another counts by kneeling next to the quadrat) or ability (e.g.,
one investigator can't hear the high-pitched bird calls that another can).

¢ Transcription and recording errors. Nonsampling errors can be introduced if the data
recorder’s “7s” look like “1s” to the person entering the data.
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Figure 7.2. Examples of sampling errors from sampling the 400-plant population. The population estimates of 80 plants and 960 plants
are far from the true population of 400 plants,
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* Incorrect or inconsistent species identification. This category also includes biases in-
troduced by missing certain size classes or color morphs.

Because sampling designs and statistical analyses are based on the assumption that nonsam-
pling errors are zero, the number of nonsampling errors needs to be minimized. Ensure that your
sampling unit makes sense for the type of measurement technique you have selected. When dif-
ferent personnel are used in the same monitoring study, conduct rigorous training and testing to
ensure consistency in counts or measurements. Design field data forms (see Chapter 6) that are
easy to use and easy for data transcribers to interpret. Proof all data entered into computer pro-
grams to ensure that entered numbers are correct. In contrast to sampling errors, the probability
of nonsampling errors occurring cannot be assessed from pilot sample data.

SAMPLING DISTRIBUTIONS

One way of evaluating the risk of obtaining a sample value that is vastly different from the true
value (such as population estimates of 80 or 960 plants when the true population is 400 plants)
is to sample a population repeatedly and to look at the differences among the repeated popula-
tion estimates. If almost all the separate, independently derived, population estimates are si milar,
then you know you have a good sampling design with high precision. If many of the independent
population estimates are not similar, then you know your precision is low. _

The 400-plant population can be resampled by erasing the 10 quadrats (as shown in either Fig.
7.1 or Fig. 7.2) and placing 10 more in new, random positions. We can keep repeating this procedure,
each time writing down the sample mean. Plotting the results of a large number of individual sample
means in a simple histogram yields a sampling distribution. A sampling distribution is a distribution
of many independently gathered sample statistics (most often a distribution of sample means).
Under most circumstances, this distribution of sample means fits a normal or bell-shaped curve.

A distribution of population-size estimates from 10,000 separate random samples using ten
2m x 2m quadrats from the 400 plant population is shown in Figure 7.3A. The x-axis shows the
range of different population estimates, and the y-axis shows the relative and actual frequency
of the different population estimates. Think of this as the results of 10,000 different people
sampling the same population on the same day, each one setting out 10 randomly positioned 2m
% 2m quadrats (somehow without negatively impacting the population) and coming up with
their own independent population estimate. The highest population estimate out of the 10,000
separate samples was 960 plants, and the lowest population estimate was zero (four of the
10,000 samples vielded a population estimate of zero). The shape of this distribution indicates
the magnitude of likely sampling errors. Wide distributions mean that sampling could yield pop-
ulation estimates that are “far” from the true population value. A sampling design that led to the
type of sampling distribution depicted in Figure 7.3A would not be useful since few of the esti-
mates approach the true population size of 400 plants. One of the principal objectives in sampling
design is to make the shape of sampling distributions as narrow as possible.

Fortunately, you do not have to repeatedly sample your population and see how wide your
sampling distribution is to determine if you need to change anything. There are some simple sta-
tistical tools that provide a convenient shortcut for evaluating the precision of your sampling ef-
fort from a single sample. These tools involve calculating standard errors and confidence intervals
to estimate sampling precision levels.

Standard Error

A standard error is the standard deviation of a large number of independent sample means. It is a
measure of precision that you derive from a single sample. To paraphrase the earlier statement
regarding an important objective of sampling design, one of the principal objectives in sampling de-
sign is to reduce the size of the standard error. This formula demonstrates that there are only two
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Standard error is the standard deviation  ways of minimizing standard errors—either 1) increase the

of all possible means of samples of size n  sample size (n) or 2) decrease the standard deviation (s):
from a population. The standard error

quantifies the certainty with which the
mean computed from a random sample
estimates the true mean of the
population from which the sample was
drawn. We estimate the standard error
from a random sample taken from the
population. The best estimate of the
pepulation standard error is

e Increase sample size. A new sampling distribution of
10,000 separate random samples drawn from our ex-
ample population is shown in Figure 7.3B. This distri-
bution came from randomly drawing samples of
twenty 2m x 2m quadrats instead of the ten quadrats
used to create the sampling distribution in Figure
7.3A. This increase in sample size from 10 to 20 pro-
vides a 29.3% improvement in precision (as measured
by the reduced size of the standard error).

» Decrease sample standard deviation. Another sampling
Formula for standard error: R

" distribution of 10,000 separate random samples drawn
SE i from our 400-plant population is shown in Figure 7.3C.
The sampling design used to create this distribution of
population estimates is similar to the one used to cre-
ate the sampling distribution in Figure 7.3B. The only
difference between the two designs is in quadrat
shape. The sampling distribution shown in Figure 7.3B
came from using twenty 2m x 2m quadrats; the sampling distribution shown in Fig-
ure 7.3C came from using twenty 0.4m x 10m quadrats. This change in quadrat
shape reduced the true population standard deviation from 5.005 plants to 3.551
plants. This change in quadrat shape led to a 29.0% improvement in precision over
the 2m x 2m design shown in Figure 7.3B (as measured by the reduced size of the
standard error). This 29.0% improvement in precision came without changing
the sampling unit area (4m?) or the number of quadrats sampled (n = 20); only the
quadrat shape (from square to rectangular) changed. When compared with the orig-
inal sampling design of ten 2m x 2m quadrats, the twenty 0.4m x 10m quadrat de-
sign led to a 49.8% improvement in precision. Details of this method and other

methods of reducing sample standard deviation are covered in Chapter 8.

where SE = standard error
s = standard deviation
n = sample size

How is the standard error most often used to report the precision level of sampling data?
Sometimes the standard error is reported directly. You may see tables with standard errors re-
ported or graphs that include error bars that show + 1 standard error. Often, however, the stan-
dard error is multiplied by a coefficient that converts the number into something called a
confidence interval.

Confidence Intervals

A confidence interval provides an estimate of precision around a sample mean, a sample propor-
tion, or an estimate of total population size that specifies the

A confidence interval is the interval likelihood that the interval includes the true value.
within which a true parameter value lies A confidence interval includes two components: 1) the
with known probability. It is a measure of confidence interval width (e.g., + 340 plants), and 2) the con-
the reliability of our sample estimate fidence level (e.g., 90%, 95%). The confidence level indicates
of the parameter value. the probability that the interval includes the true value. Con-

fidence interval width decreases as the confidence level de-
creases. Three confidence intervals for the design that used a sample of 10 of the 2m x 2m
quadrats are shown again in Figure 7.4A, where they are graphed in a format commonly used to
report confidence intervals. There is no gain in precision associated with the narrowing of confi-
dence interval width as you go from left to right in Figure 7.4A (i.e., from 95% confidence, to
80% confidence, to 50% confidence); only the probability that the confidence interval includes
the true value is altered. Another set of three confidence intervals is shown in Figure 7.4B. Like
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Figure 7.3. Sampling distributions from three separate sampling designs used on the 400-plant popula-
tion. All distributions were created by sampling the population 10,000 separate times. The smooth lines
show a normal bell-shaped curve fit to the data. Figure 3A shows a sampling distribution where ten 2m x
2m quadrats were used. Figure 3B shows a sampling distribution where twenty 2m x 2m quadrats were
used. Figure 3C shows a sampling distribution where twenty 0.4m x 10m quadrats were used.

Figure 7.4A, confidence intervals get narrower as we move from left to right in the graph, but
this time the confidence level is the same (95%), and the narrower widths came from using dif-
ferent sampling designs. There is a gain in precision associated with the narrowing of confidence
interval width as you go from left to right in Figure 7.4B (i.e., from the ten 2m x 2m design to
the twenty 2m x 2m design to the twenty 0.4m x 10m design) because we have reduced the un-
certainty of our population estimate by tightening the confidence interval width at the same con-
fidence level.

To calculate confidence intervals for sample means, we need two values: 1) the standard
error (SE = s/\n), and 2) the corresponding value from a table of critical values of the t distribu-
tion (see Appendix III for instructions on calculating confidence intervals around proportions).
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Figure 7.4. Comparison of confidence intervals and
confidence levels for different sampling designs from the
400-plant population. Figure A shows three different confi-
dence levels (95%, 80%, and 50%) for the same data set
based upon sampling ten 2m % 2m quadrats. Figure B
shows 95% confidence intervals for three different sam-
pling designs that differ in the level of precision of the pop-
ulation estimates.

The confidence interval half-width, extending an
equal distance on both sides of the mean, is the
standard error x the critical t value (except when
sampling from finite populations; see the next
section). The appropriate critical value of t de-
pends on the level of confidence desired and the
number of sampling units (n) in the sample. Val-
ues of the t distribution can be found in many
statistical texts.! To use a t table, you must first
select the appropriate confidence level column.
If you want to be 95% confident that your confi-
dence interval includes the true mean, use the
column headed «(2) = 0.05. For 90% confi-
dence, use the column headed (2) = 0.10. You
use ¢t(2) because you are interested in a confi-
dence interval on both sides of the mean. You
then use the row indicating the number of de-
grees of freedom (v), which is the number of
sampling units minus one (n-1).

For example, if we sample 20 quadrats in
the macroplot shown in Figure 7.1 and come up
with a mean of 5.0 plants and a standard devia-
tion of 4.616, we would calculate a 95% confi-
dence interval around our sample mean:

The standard error (SE = s/\n) = 4.616/4.472 = 1.032

The appropriate t value from a t table for 19 de-
grees of freedom (v) is 2.093. One-half of our
confidence interval width is then

SE x t-value = 1.032 x 2.093 = 2.160

Qur 95% confidence interval can then be
reported as 5.0 + 2.16 plants/quadrat, or we can
report the entire confidence interval width from
2.84 to 7.16 plants/quadrat. This indicates a
95% chance that our interval from 2.84 plants/
quadrat to 7.16 plants/quadrat includes the true
value.”

Another way to think of 95% confidence in-
tervals calculated from sampling data is that the
interval specifies a range that should include the
true value 95% of the time. If you are calculating

95% confidence intervals and independently randomly sample a population 100 different times,
you should see that approximately 95 of the intervals will include the true mean and 5 will miss
it (Fig. 7.2A shows a sample that misses the true mean). This relationship is shown in Figure 7.5
where 100 independent population estimates are graphed with 95% confidence intervals from

'Links to the on-line tables on the Web can be found on our Web page (see Preface).

"This is not a very precise estimate, but it would improve with the application of the finite correction factor. In this example,
we have sampled 20 of the 100 possible quadrats, or 20% of the population. We would apply the finite correction factor de-

scribed in the next section.
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Figure 7.5. Population estimates from 100 separate random samples from the 400-plant population. Each
sample represents the population estimate from sampling twenty 0.4m x 10m quadrats. The horizontal line
through the graph indicates the true population of 400 plants. Vertical bars represent 95% confidence intervals.
Four of the intervals miss the true population size.

the 400-plant populations using samples of twenty 0.4m x 10m quadrats. You will notice that
the solid diamonds, used to show each of the 100 population estimates, fluctuate around the
true population value of 400 plants. You will also notice that 96 out of 100 confidence intervals
shown in Figure 7.5 include the true value. If the confidence level had been set at 80%, then ap-
proximately 20 of the intervals would have failed to include the true value. A 99% confidence
level would have led to approximately only one interval out of the 100 that did not include the
true population size (to capture the true value more often, the individual confidence interval
widths for a 99% confidence level are wider than the confidence interval widths for a 95% confi-
dence level).

FINITE VERSUS INFINITE POPULATIONS

If we are sampling with quadrats and no two quadrats may overlap, there is a finite number of
quadrats that can be placed in the area to be sampled (this is called sampling without replace-
ment). If the sampled area is large, then the number of quadrats placed in the area may be very
large as well, but nonetheless finite. On the other hand, an infinite number of points or lines
could be placed in the area to be sampled. This is because points, at least theoretically, are di-
mensionless, and lines are dimensionless in one direction. This means, at least for all practical
purposes, that a population of points or of lines is infinite.

If the area to be sampled is large relative to the area that is actually sampled, the distinction
between finite and infinite is of only theoretical interest. When, however, the area sampled
makes up a significant portion of the area to be sampled, we can apply the finite population cor-
rection factor, which reduces the size of the standard error.
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The finite population correction factor (FPC) should always When n is small relative to N, the

be applied if you are sampling more than 5% of the equation is close to 1, whereas when n is

population. It is applied to confidence intervals, as well as  large relative to N, the value approaches

statistical tests (see Chapter 9). zero. The standard error (s/Vn) is multi-

plied by the finite population correction

Formula for the finite population correction factor: factor to yield a corrected standard error
pC= [N=n for the finite population.

N Consider the following example. The

where N = total number of potential quadrat positions density of plant species X is estimated

n = number of quadrats sampled within a 20m x 50m macroplot (total

area = 1000m?). This estimate is obtained

Here is an example where the FPC is applied to the by collecting data from randomly selected

standard error: Ilm x 10m quadrats (10m?). Sampling

without replacement, there are 100 pos-

where SE' = corrected standard error

sible quadrat positions.

Se'=(sE) (R0 se-(0.73) [18-30 0.6 Thus, our population, N, is 100. Let
L us say we take a random sample, n, of 30
of these quadrats and calculate a mean of
eight plants per quadrat and a standard
deviation of four plants per quadrat. Our
standard error is thus: s/Vn = 4/N30 =

sE uncorrected standard error
N = total number of potential quadrat positions
n = number of quadrats sampled

Il

0.73. Although our sample mean is an
unbiased estimator of the true population mean and needs no correction, the standard error
should be corrected by the finite population correction factor.

Because the standard error is one of the factors used to calculate confidence intervals (the
other is the appropriate value of 1 from a t table), correcting the standard error with the finite
population correction factor makes the resulting confidence interval narrower. It does this, how-
ever, only if n is sufficiently large relative to N. A rule of thumb is that unless the ratio n/N is
greater than 0.05 (i.e., you are sampling more than 5% of the population area), there is little to
be gained by applying the finite population correction factor to your standard error.

The finite population correction factor is also important in sample size determination (see
Chapter 8) and in adjusting test statistics (see Chapter 9). The finite population correction factor
works, however, only with finite populations, which we will have when using quadrats, but will
not have when using points or lines.

FALSE-CHANGE ERRORS AND MISSED-CHANGE ERRORS

False-change errors and missed-change errors relate to situations where two or more sample
means or proportions are being compared with some statistical test. This comparison may be be-
tween two or more places or the same place between two or more periods. These terms are per-
tinent to both the planning and the interpretation stages of a monitoring study. Consider a
simple example where you have sampled a population in two different years and now you want
to determine whether a change took place between the two years. You usually start with the as-
sumption, called the null hypothesis, that no change has taken place. You may make two types
of decisions when interpreting the results of a monitoring study: 1) you can decide that a change
took place, or 2) you can decide that no change took place. In either case, you can be right, or
you can be wrong (Fig. 7.6).

The conclusion that a change took place may lead to some kind of action. For example, if a
population of a rare fish is thought to have declined, a change in management may be needed. If a
change was detected but did not actually occur, this constitutes a false-change error, a sort of false
alarm. Controlling this type of error is important because taking action unnecessarily can be ex-
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monitoring for change — possible errors

stream bank if a decline in a rare fish popula- ho'change has shiern bEibas
tion really did not take place). There will be taken place a real change
a certain probability of concluding that a

change took place even if no difference actu- monitoring false-change error ho error
ally occurred. The probability of this occur- system detects a (Typsl}a (Power) 1- B
ring is usually labeled the P value, which is change

one of the types of information that comes monitoring _

out of a statistical analysis of the data (see system detects no Yo grror missed-change error
Chapter 9). The P value reports the likeli- change (-9 (Fpei)g
hood that the observed difference was the re-

sult of a false-change error. For example, if a

statistical test comparing two sample means Figure 7.6. Four possible outcomes for a statistical test of

i some null hypothesis, depending on the true state of nature.
vields a P value of 0.24, this indicates that i R

there is a 24% chance of obtaining the observed result even if no true difference exists between
the two sample means.

Some threshold value for this false-change error rate should be set in advance so that the
P value from a statistical test can be evaluated relative to the threshold. P values from a statistical
test that are smaller than or equal to the threshold are considered statistically “significant,”
whereas P values that are larger than the threshold are considered statistically “nonsignificant.”
Statistically significant differences may or may not be ecologically significant, depending on the
magnitude of difference between the two values. The most commonly cited threshold for false-
change errors is the .05 level, but there is no reason to arbitrarily adopt the 0.05 level as the ap-
propriate threshold. The decision of what false-change error threshold to set depends on the
relative costs of making this type of mistake and the impact of this error level on the other type
of mistake, a missed-change error.

When monitoring a rare species, we are usually most concerned about declines. The conclu-
sion that no change took place usually does not lead to changes in management practices. Failing
to detect a true change constitutes a missed-change error. Controlling this type of error is impor-
tant because failing to take action when a true change actually occurred may lead to the serious
decline of a population.

Statistical power is the complement of the missed-change error rate (e.g., a missed-change
error rate of 0.25 gives you a power of 0.75; a missed-change error rate of 0.05 gives you a power
of 0.95). High power (a value close to 1) is desirable and corresponds to a low risk of a missed-
change error. Low power (a value close to 0) is not desirable because it corresponds to a high risk
of a missed-change error.

Since power levels are directly related to missed-change error levels, either level can be re-
ported and the other level easily calculated. Power levels are often reported instead of missed-
change error levels, because it seems easier to convey this concept in terms of the certainty of
detecting real changes. For example, the statement “I want to be at least 90% certain of detecting a
real change of 5 plants/quadrat” (power is 0.90) is simpler to understand than “1 want the probabil-
ity of missing a real change of 5 plants/quadrat to be 10% or less” (missed-change error rate is 0.10).

An assessment of statistical power or missed-change errors has been virtually ignored in the
field of environmental monitoring. A survey of over 400 papers in fisheries and aquatic sciences
through the 1980s found that 98% of the articles that reported nonsignificant results failed to re-
port any power results (Peterman 1990). A separate survey, reviewing toxicology literature,
found high power in only 19 out of 668 reports that failed to reject the null hypothesis (Hayes
1987). Similar surveys in other fields such as psychology or education have turned up “depress-
ingly low” levels of power (Brewer 1972; Cohen 1988).

It is not clear why missed-change errors have traditionally been ignored in environmental
monitoring. Perhaps researchers have not been sufficiently exposed to the idea of missed-change
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errors nor understood how considering power can improve their work. Perhaps people have not
realized the potentially high costs associated with making missed-change errors. Most introduc-
tory texts and statistics courses deal with the material only briefly. Computer packages for power
analysis have only recently become available.

The situation has improved in recent years. A literature review in the 1980s would not have
turned up many articles dealing with statistical power issues. A literature review today would
turn up dozens of articles in many disciplines from journals all over the world (see Peterman
[1990] and Fairweather [1991] for good review papers on statistical power). In the 1990s, ecolo-
gists and conservation biologists began paying more attention to power concerns (Andren 1996;
Gibbs et al. 1998; Green and Young 1993; Osenberg et al. 1994). A number of recent wildlife
biology papers discuss power issues and monitoring wildlife population trends (Beier and Cun-
ningham 1996; Hatfield et al. 1996; Kendell 1992; Taylor and Gerrodette 1993; Van Strien et al.
1997; Zielinski and Stauffer 1996). A few papers have been published specifically on power
analysis and amphibian populations (Hayes and Steidl 1997; Reed and Blaustein 1995).

False-change and missed-changed errors are related (although not directly). Reducing one
increases the other (discussed and graphically portrayed below). Balancing these when designing
a monitoring study requires consideration of which error is more costly in terms of management
and natural resources. Most commonly in the management of rare species, we are concerned
about a decline; committing a missed-change error (missing a true decline) may be very costly in
terms of the viability of the species because we may fail to implement management action until
the decline becomes very obvious. In other situations, a conclusion that no change took place
may trigger a management action. For example, if you were trying to control weeds, and if the
monitoring suggested no changes were resulting from your current management, you would
likely institute alternative or more intensive management. Similarly, if your management was at-
tempting to increase a rare species, and if your monitoring suggested no change, you might
change the type of management being implemented. In both of these situations a missed-change
error would result in increased management activity that may not be necessary (i.e., your current
management may actually be effective at reducing the weed population, or increasing the rare
species, but your monitoring does not detect it), but committing such an error and changing
management would probably not be detrimental to the resource you are trying to manage. A
false-change error, however, may make you believe that your management is effective at decreas-
ing the weed or increasing the rare species when, in fact, your management is ineffective and nei-
ther has actually changed.

MINIMUM DETECTABLE CHANGE

Another sampling design concept that is directly related to statistical power and false-change
error rates is the size of the change that you want to be able to detect. This will be referred to as
the minimum detectable change or MDC.

The MDC is the size of the change you identify in the management objective (see Chap-
ter 14). Setting MDCs requires considering both the biological implications and the monitoring
costs. If power and the false-change error rate remain the same, detecting a small change will re-
quire more intensive monitoring (usually more sampling units) than detecting a large change.
With a large enough sample size, statistically significant changes can be detected for changes that
have no biological significance (Johnson 1999).

How large a change should be considered biologically meaningful? Should a 30% change in
the mean density of a rare plant population be cause for alarm? Should a population decline of
20% of a rare animal be of concern? What about a 15% change or a 10% change? If, for example,
an intensive monitoring design leads to the conclusion that the mean density of a plant popula-
tion increased from 10.0 plants/m® to 10.1 plants/m?, does this represent some biologically
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meaningful change in population density? Probably not. Further, a design that detected such a
small change wasted limited monitoring resources.

Setting a reasonable MDC can be difficult when little is known about the natural history of
a particular species (see Chapter 14 for general suggestions). The initial MDC, set during the de-
sign of a new monitoring study as part of the objectives, can be modified once monitoring infor-
mation demonstrates the size and rate of population fluctuations.

HOW TO ACHIEVE HIGH STATISTICAL POWER

Statistical power is related to four, separate, sampling design components by the following func-
tion equation:

Power = a function of (&, MDC, n, and )

where

o = false-change error rate
MDC = minimum detectable change
n = number of sampling units

5 standard deviation

Power can be increased in the following four ways:

1. Increasing the acceptable level of false-change errors (a).
2. Increasing the MDC.

3. Increasing the number of sampling units sampled. This method of increasing power
is straightforward, but keep in mind that increasing n has less of an effect than de-

creasing s because the square root of sample size is used in the standard error equa-
tion (SE = s/\n).

4. Reducing standard deviation. This means altering the sampling design to reduce the
amount of variation among sampling units (see Chapter 8).

Note that the first two ways of increasing power are related to making changes in the sam-
pling objective, whereas the other two ways are related to making changes in the sampling design
(see Chapter 14).

POWER AND TRADEOFFS—A GRAPHIC COMPARISON

In this section we take a graphic look at how altering these factors changes power. The compar-
isons in this section are based on sampling a fictitious plant population where we are interested
in assessing plant density relative to an established threshold value of 25 plants/m’. Any true
population densities less than 25 plants/m? will trigger management action. We are only con-
cerned with the question of whether the density is lower than 25 plants/m* and not whether the
density is higher. In this example, our null hypothesis (Hy) is that the population density equals
25 plants/m?, and our alternative hypothesis is that density is less than 25 plants/m?. The density
value of 25 plants/m? is the most critical single density value since it defines the lower limit of
acceptable plant density.

The figures in this section are all based on sampling distributions where we happen to know
the true plant density. Recall that a sampling distribution is a bell-shaped curve that depicts the
distribution of a large number of independently gathered sample statistics. A sampling distribu-
tion defines the range and relative probability of any possible sample mean. You are more likely
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to obtain sample means near the middle of the distribution than you are to obtain sample means
near either tail of the distribution.

A sampling distribution based on sampling our fictitious population with a true mean den-
sity of 25 plants/m® is shown in Figure 7.7A. This distribution is based on a sampling design
using thirty 1m x 1m quadrats where the true standard deviation is = 20 plants/quadrat. If 1000
different people randomly sample and calculate a sample mean based on their 30 quadrat values,
approximately half the individually drawn sample means will be less than 25 plants/m?, and half
will be greater than 25 plants/m®. Approximately 40% of the samples will yield sample means
less than or equal to 24 plants/m*®. A few of our 1000 individuals will obtain estimates of the

A if Hg is true and the true mean = 25 n=30
s=20 p1ants_,r‘m2

e

S

£l

l~n

£

s

=

o

0 5 10 15 18 8’? 20 25 30 35 40
observed mean density (plants/mz)
4—— rejectHp }E < do not reject Hy ——Pp
B if Hp is false and the true mean = 20 n=30
s=20 piam:s,/m2

o

g

o

=

&

g

=

o B=0.62

0 sl ——L P |

0 5 10 15 18.8 20 25 30 35 40
observed 1-“nean density {plants/mz)

Figure 7.7. Example of sampling distributions for mean plant density in samples of 30 quadrats where the
among-quadrat standard deviation is 20 plants/m®. Part A is the sampling distribution for the case in which the
null hypothesis, Hy, is true and the true population mean density is 25 plants/m”. The shaded area in part A is
the critical region for & = 0.05 and the vertical dashed line is at the critical sample mean value, 188. Part B is
the sampling distribution for the case in which Hy is false and the true mean is 20 plants/m®. In both distribu-
tions, a sample mean to the left of the vertical dashed line would reject Hy, and to the right of it, would not re-
ject H,. Power and P values in part B, in which Hj is false and the true mean = 20, are the proportion of sample
means that would occur in the region in which H, was rejected or not rejected, respectively,
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mean density that deviate from the true value by a large margin. One of the individuals will
likely stand up and say, “my estimate of the mean density is 13 plants/m?” even though the true
density is actually 25 plants/m®. As interpreters of the monitoring information, we would con-
clude that, since 999 of the 1000 people obtained estimates of the density that were greater than
13, the true density is probably not 13. Our best estimate of the true mean density will be the
average of the 1000 separate estimates (this average is likely to be extremely close to the actual
true value).

Now that we have the benefit of 1000 independent estimates of the true mean density, we
can return to the population at a later time; take a single, random sample of thirty 1m x 1m
quadrats; calculate the sample mean; and then ask the question, “what is the probability of ob-
taining our sample mean value if the true population is still 25 plants/m??” If our sample mean
density turns out to be 24 plants/m®, would this lead to the conclusion that the population has
crossed our threshold value? Seeing thiat our sample mean is lower than our target value might
raise some concerns, but we have no objective basis to conclude that the true population is not,
in fact, still actually 25 plants/m®. We learned in the previous paragraph that a full 40% of possi-
ble samples are likely to yield mean densities of 24 plants/m? or less if the true mean is
25 plants/m®. Thus, the probability of obtammg a single sample mean of 24 plants/m? or less
when the true dens:tv is actually 25 plants/m’ is approximately 0.40. Obtaining a sample mean
of 24 plants/m® is consistent with the hypothesis that the true population density is actually
25 plants/m?,

How small a sample mean do we need to obtain to feel confident that the population has
indeed dropped below 25 plants/m?? What will our interpretation be if we obtained a sample
mean of 22 plants/m*? Based on our sampling distribution from the 1000 people, the probability
of obtaining an estimate of 22 plants/m*® or less is around 20%, which represents a one-in-five
chance that the true mean is still actually 25 plants/m®. Based on the sampling distribution from
our 1000 separate samplers, we can look at the likelihood of obtaining other different sample
means. The probability of obtaining a sample of 20 plants/m? is 8.5%, and the probability of ob-
taining a sample of 18 plants/m? is 2.9% if the true mean density is 25 plants/m?.

Since in most circumstances we will only have the results from a single sample (and not the
benefit of 1000 independently gathered sample means), another technique must be used to de-
termine whether the population density has dropped below 25 plants/m?. One method is to run
a statistical test that compares our sample mean to our density threshold value (25 plants/m?).
The statistical test will yield a P value that defines the probability of obtaining our sample mean
if the true population density is actually 25 plants/m?. As interpreters of our monitoring informa-
tion, we will need to set some probability threshold P value to guide our interpretation of the
results from the statistical test. This P value threshold defines our acceptable false-change
error rate. If we run a statistical test that compares our sample mean to our density threshold
value (25 plants/m?), and if the P value from the test is lower than our threshold value, then we
conclude that the population density has, in fact, declined below 25 plants/m?®. Thus, if we set
our P value threshold to 0.05 and the statistical test yields a P value of 0.40, then we fail to reject
the null hypothesis that the true population density is 25 plants/m?. If, however, the statistical
test yields a P value of 0.022, this is lower than our threshold P value of 0.05, and we would re-
ject the null hypothesis that the population is 25 plants/m? in favor of our alternative hypothesis
that the density is lower than 25 plants/m?.

The relationship between the P value threshold of 0.05 and our sampling distribution based
on sampling thirty Im x 1m quadrats is shown in Figure 7. 7A. The threshold density value corre-
sponding to our P value threshold of 0.05 is 18.8 plants/m?®, which is indicated on the sampling
distribution by the dashed vertical line. Thus, if we obtain a mean density of 18 plants/m?, which
is to the left of the vertical line, we reject the null hypothesis that the population density is
25 plants/m? in favor of an alternative hypothesis that density is lower than 25 plants/m?2. If we
obtain a mean density of 21 plants/m?, which is to the right of the vertical line, then we fail to
reject the null hypothesis that the population density is really 25 plants/m”.
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So far, we have been discussing the situation where the true population density is right at
the threshold density of 25 plants/m?. Let us look now at a situation where we know the true
density has declined to 20 plants/m®. What is the likelihood of our detecting this true, density
difference of 5 plants/m?? Figure 7.7B shows a new sampling distribution based on the true den-
sity of 20 plants/m? (standard deviation is still + 20 plants/m®). We know from our previous dis-
cussion that sample means to the right of the vertical line in Figure 7.7A lead to the conclusion
that we cannot reject the null hypothesis that our density is 25 plants/m®. If our new sample
mean turns out to exactly match the new true population mean (i.e., 20 plants/m?), will we re-
ject the idea that the sample actually came from a population with a true mean of 25 plants/m??
No, at least not at our stated P value (false-change error) threshold of 0.05. A sample mean value
of 20 plants/m? falls to the right of our dashed threshold line in the “do not reject Hy" portion of
the graph, and we would have failed to detect the true difference that actually occurred. Thus,
we would have committed a missed-change error.

What is the probability of missing the true difference of 5 plants/m? shown in Figure 7.7B?
This probability represents the missed-change error rate (B), and it is defined by the nonshaded
area under the sampling distribution in Figure 7.7B, which represents 62% of the possible sample
mean values. Recall that the area under the whole curve defines the entire range of possible val-
ues that you could obtain by sampling the population with the true mean = 20 plants/m’. If we
bring back our 1000 sampling people and have each of them sample thirty Im x Im quadrats in
our new population, we will find that approximately 620 of them will obtain estimates of the
mean density that are greater than the threshold value of 18.8 plants/m” that is shown by the
vertical dashed line.

What about the other 380 people? They will obtain population estimates fewer than the
critical threshold of 18.8 plants/m”, and they will reject the null hypothesis that the population
equals 25 plants per quadrat. This proportion of 0.38 (380 people out of 1000 people sampling)
represents the statistical power of our sampling design, and it is represented by the shaded area
under the curve in Figure 7.7B. If the true population mean is indeed 20 plants/m? instead of
25 plants/m?, then we can be 38% sure (power = 0.38) that we will detect this true difference of
5 plants/m’. With this particular sampling design (thirty Im x 1m quadrats) and a false-change
error rate of o = 0.05, we run a 62% chance (B = 0.62) that we will commit a missed-change
error (i.e., fail to detect the true difference of 5 plants/m?). If the difference of 5 plants/m® is bio-
logically important, a power of only 0.38 would not be satisfactory.

We can improve the low-power situation in four different ways: 1) increase the acceptable
false-change error rate, 2) increase the acceptable MDC, 3) increase sample size, or 4) decrease

the standard deviation. New, paired, sampling distributions illustrate the influence of making
each of these changes.

Increasing the Acceptable False-Change Error Rate

In Figure 7.7B, a false-change error rate of o = 0.05 resulted in a missed-change error rate of
B = 0.62 to detect a difference of 5 plants/m?. Given these error rates, we are more than 12 times
more likely to commit a missed-change error than we are to commit a false-change error. What
happens to our missed-change error rate if we specify a new, higher, false-change error rate?
Shifting our false-change error rate from o = 0.05 to o = 0.10 is illustrated in Figure 7.8 for the
same sampling distributions shown in Figure 7.7. Our critical density threshold at the P = 0.10
level is now 20.21 plants/m?, and our missed-change error rate has dropped from B = 0.62 down
to B = 0.47 (i.e., the power to detect a true difference of 5 plants/m? increased from 0.38 to 0.53).
A sample mean of 20 plants/m® will now lead to the correct conclusion that a difference of
5 plants/m? between the populations does exist. Of course, the penalty we pay for increasing our
false-change error rate is that we are now twice as likely to conclude that a difference exists in
situations when there is no true difference and our population mean is actually 25 plants/m?’.
Changing the false-change error rate even more, to o = 0.20 (Fig. 7.9), reduces the probability of
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Figure 7.8. The critical region for the false-change error in the sampling distributions from Figure 7.7 has
been increased from o = 0.05 to o = 0.10. Part B. in which the Hj is false and the true mean = 20, shows that
power is larger for oo = 0.10 than for Figure 7.7 where o = 0.05.

making a missed-change error down to B = 0.29 (i.e., giving us a power of 0.71 to detect a true
difference of 5 plants/m?).

Increasing the Acceptable Minimum Detectable Change

Any sampling design is more likely to detect a true, large difference than a true, small difference.
As the magnitude of the difference increases, we will see an increase in the power to detect the
difference. This relationship is shown in Figure 7.10B, where we see a sampling distribution with
a true mean density of 15 plants/m?, which is 10 plants/m? below our threshold density of
25 plants/m®. The false-change error rate is set at a = 0,05 in this example. This figure shows
that the statistical power to detect this larger difference of 10 plants/m? (25 plants/m? to 15
plants/m?) is 0.85 compared with the original power value of 0.38 to detect the difference of
5 plants/m® (25 plants/m? to 20 plants/m?). Thus, with a false-change error rate of 0.05, we can
be 85% certain of detecting a difference of 10 plants/m? or greater from our threshold of
25 plants/m®. If we raised our false-change error from o = 0.05 to o = 0.10 (not shown in Fig-
ure 7.10), our power value would rise to 0.92, which creates a sampling situation where our two
error rates are nearly equal (o = 0.10, B = 0.08).
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Figure 7.9. The critical region for the false-change error in the sampling distributions from Figure 7.7
has been increased from o = 0.05 to o = 0.20. Part B, in which the H, is false and the true mean = 20,
shows that power is larger for & = 0.20 than for Figure 7.7 where & = 0.05 or Figure 7.8 where o. = 0,10,
Again, a sample mean to the left of the vertical dashed line would reject Hy, while one to the right of it
would not reject H.

Increasing the Sample Size

The sampling distributions shown in Figures 7.7 to 7.10 were all created by sampling the popula-
tions with n = thirty Im x Im quadrats. Any increase in sample size will lead to a subsequent in-
crease in power to detect some specified minimum detectable difference. This increase in power
results from the sampling distributions becoming narrower, Sampling distributions based on sam-
ples of n = 50 are shown in Figure 7.11, where the true difference between the two populations
is once again 5 plants/m® with a false-change error rate threshold of o = 0.05. The increase in
sample size led to an increase in power from power = 0.38 with n = 30, to power = 0.54 with
n = 50. Note that the critical threshold density associated with an o = 0.05 is now 20.3 plants/m?
as compared with the threshold of 18.8 plants/m? when n = 30.

Decreasing the Standard Deviation

The sampling distributions shown in Figures 7.7 to 7.11 all are based on sampling distributions
with a standard deviation of +20 plants/m”. The quadrat size used in the sampling was a square
Im x Im quadrat. If individuals in the plant population are clumped in distribution, then it is
likely that a rectangular shaped quadrat will result in a lower standard deviation (see Chapter 8
for a detailed description of the relationship between standard deviation and sampling unit size
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A if Hp is true and the true mean = 25 n=30
' s = 20 plants/m2
> :
[ - L
g I
o 1
E 1
@ '
= 1
_E '
g ;
a- :
0 <A
0 5 10 15 18.8 20 25 30 35 40
observed mean density (plants/m?)
B if Hg is false and the true mean = 15
1
= ;
1r-:l' 1
g ;
O
£ I
!
7; power = 0.85 : B=0.15
il
% 5 10 15 13',ai 20 25 30 35 40

observed mean density {planr_f./mz)

Figure 7.10. Part A is the same as Figure 7.7; in part B, the true population mean is 15 plants/m? instead
of the 20 plants/m® shown in Figure 7.7. Note that power increases (and [ decreases) when the new true
population mean gets further from the original true mean of 25 plants/m®. Again, a sample mean to the left of
the vertical dashed line would reject H, while one to the right of it would not reject H,.

and shape). Figure 7.12 shows sampling distributions where the true population standard devia-
tion was reduced from +20 plants/m?® to 10 plants/m?. Note that the critical threshold density
associated with an o of 0.05 is now 21.9 plants/m? compared with a threshold of 18.8 plants/m’
when the standard deviation was +20 plants/m?. This reduction in the true standard deviation
came from a change in quadrat shape from the 1m x 1m square shape to a 0.2m x 5m rectangu-
lar shape. Note that quadrat area (1m?) stayed the same, so that the mean densities are consis-
tent with the previous sampling distributions shown in Figures 7.7 through 7.11. This reduction
in standard deviation led to a dramatic improvement in power, from 0.38 (with s = 20
plants/m?) to 0.85 (with s = 10 plants/m?®). Reducing the standard deviation has a more direct
impact on increasing power than increasing sample size, because the sample size is reduced by
taking its square root in the standard error equation (SE = s/Vn). Recall that the standard error
provides an estimate of sampling precision from a single sample without having to enlist the sup-
port of 1000 people who gather 1000 independent sample means.

POWER CURVES

The relationship between power and the different sampling design components that influence
power can also be displayed in power curve graphs. These graphs typically show power values on
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With n = 50 instead of n = 30
if Hp is true and the true mean = 25 n=50
A s=20 plemt_t;,"rn2
e,
2
b
g
P
3
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a=0.05
¢ oo
!
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observed mean density (plants/’mz}
B if Hg is false and the true mean = 20
o
3
=
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=
5 power = 0.54 B=046
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Figure 7.11. The sample size was increased to n = 50 quadrats from the n =30 quadrats shown in Figure
7.7. Note that power increases (and [} decreases) at larger sample sizes. Again, a sample mean to the left of
the vertical dashed line would reject H,. while one to the right of it would not reject Hy,.

the y-axis and either sample size, MDC, or standard deviation values on the x-axis. Figure 7.13A
shows statistical power graphed against different magnitudes of change for the same hypothetical
dataset described above and shown in Figures 7.7 to 7.10. Four different power curve lines are
shown, one for each of the following four different false-change () error rates: 0.01, 0.05, 0.10, and
0.20. The power curves are based on sampling with a sample size of 30 quadrats and a standard de-
viation of 20 plants/m®. For any particular false-change error rate, power increases as the magnitude
of the minimum detectable change increases. When o = 0.05, the power to detect small changes is
very low. For example, we have only a 13% chance of detecting a difference of 2 plants/m? (i.e., a
density of 23 plants/m”, which is 2 plants/m? below our threshold value of 25 plants/m?). In contrast,
we can be 90% sure of detecting a minimum difference of 11 plants/m®. We can also attain higher
power by increasing the false-change error rate. The power to detect a change of 8 plants/m? is only
0.41 when ¢ =0.01, but it increases to 0.69 at e = 0.05, to 0.81 at . = 0.10, and to 0.91 at o = 0.20.
A different set of power curves are shown in Figure 7.13B, where the sample size is n = 50 in-
stead of the n = 30 shown in Figure 7.13A. This larger sample size shifts all of the power curves to
the left, making it more likely that smaller changes will be detected. For example, with a false
change error rate of & = 0.10, the power to detect a difference of 7 plants/m? is 0.88 with a sample
size of n = 50 quadrats compared with the power of 0.73 with a sample size of n = 30 quadrats.
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With s = 10 instead of s = 20
A ' if Hg is true and the true mean = 25 n=30
y s=10 plant:.‘,r":‘l"r2
&
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B if Hg is false and the true mean = 20
i
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'\ 7
;
0 \
0 5 10 15 0 Ky, 30 35 40
observed mean density (plants/m?)

Figure 7.12. The standard deviation (s) of 20 plants/m* shown in Figure 7.7 is reduced to ten plants/m?,
Note that power increases (and i decreases), as the standard deviation decreases. Again, a sample mean to
the left of the vertical dashed line would reject Hy, while one to the right of it would not reject H,.

Figure 7.13C illustrates the effect of reducing the standard deviation from 20 plants/m? to 10
plants/m?. The smaller standard deviation shifts all of the power curves to the left and results in much
steeper slopes. The smaller standard deviation leads to substantially higher power levels for any par-
ticular MDC value. For example, the power to detect a change of 5 plants/m? with a false change error
rate of o = 0.10 is only 0.53 in Figure 7.13A as compared with the power of 0.92 in Figure 7.13C.

USE OF PRIOR POWER ANALYSIS DURING STUDY DESIGN

Power analysis can be usetul during both the design of monitoring studies and in the interpreta-
tion of monitoring results. The former is sometimes called “prior power analysis,” whereas the
latter is sometimes called “post-hoc power analysis” (Fairweather 1991). Post-hoc power analysis
is covered in Chapter 9.

The use of power analysis during the design and planning of monitoring studies provides
valuable information that can help avoid monitoring failures. Once some preliminary or pilot
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Figure 7.13.  Power curves showing power values for various magnitudes of minimum detectable change and false-

change error rates when the standard deviation is 20. Part A shows power curves with a sample size of 30. Part B
shows power curves with a sample size of 50. Part C shows power curves with a standard deviation of 10 plants/m®.
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Figure 7.13. (Continued)

data have been gathered, or if previous monitoring data are available, power analysis can be used
to evaluate the adequacy of the sampling design. Prior power analysis can be done in several dif-
ferent ways. All are based on the power function described earlier:

Power = a function of (&, MDC, n, and s)

The power of a particular sampling design can be evaluated by plugging sample standard devia-
tion, sample size, the desired MDC, and an acceptable false-change error rate into equations or
computer programs and then solving for power (Thomas and Krebs 1997).% If the power to de-
tect a biologically important change turns out to be quite low (high probability of a missed-
change error), then the sampling design can be modified to try to achieve higher power.

Alternatively, a desired power level can be specified and the terms in the power function
can be rearranged to solve for sample size. This will give you assurance that your study design
will succeed in being able to detect a certain magnitude of change at the specified power and
talse-change error rate. This is the format for the sample-size equations that are discussed in
Chapter 8 and presented in Appendix II.

Still another way to do prior power analysis is to specify a desired power level and a particu-
lar sample size and then rearrange the terms in the power function to solve for the MDC (Roten-
berry and Wiens 1985; Cohen 1988). If the MDC is unacceptably large, then attempts should be
made to improve the sampling design. If these efforts fail, then the decision must be made to ei-
ther live with the large MDC or to reject the sampling design and perhaps consider an alternative
monitoring approach.

The main advantage of prior power analysis is that it allows the adequacy of the sampling
design to be evaluated at an early stage in the monitoring process. It is much better to learn that

ISee our Web page (addbress in Preface] for links to on-line calculators and programs that caleulate power.
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a particular design has a Jow power at a time when modifications can easily be made than it is to
learn of low power after many years of data have already been gathered. The importance of spec-
ifying acceptable levels of false-change and missed-change errors along with the magnitude of

change that you want to be able to detect is covered in Chapter 14, which introduces sampling
objectives.

MANAGEMENT IMPLICATIONS

be assessed. The false-change error rate is the probability that the sample suggests a change that
actually did not occur in the population. The missed-change error rate is the probability that the
monitoring study failed to detect a change that actually occurred. Historically, missed-change er-
rors have had less attention than false-change errors, although in monitoring, missing an unac-
ceptable change may be the more critical error. An understanding of these basic principles of
sampling is required for design of a useful and efficient monitoring study.
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